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ASYMPTOTICALLY-PRESERVING LARGE DEVIATIONS
PRINCIPLES BY STOCHASTIC SYMPLECTIC METHODS FOR A

LINEAR STOCHASTIC OSCILLATOR∗
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Abstract. It is well known that symplectic methods have been rigorously shown to be superior to
nonsymplectic ones especially in long-time computation, when applied to deterministic Hamiltonian
systems. In this paper, we attempt to study the superiority of stochastic symplectic methods by
means of the large deviations principle. We propose the concept of asymptotical preservation of
numerical methods for large deviations principles associated with the exact solutions of the general
stochastic Hamiltonian systems. Considering that the linear stochastic oscillator is one of the typical
stochastic Hamiltonian systems, we take it as the test equation in this paper to obtain precise
results about the rate functions of large deviations principles for both exact and numerical solutions.
Based on the Gärtner–Ellis theorem, we first study the large deviations principles of the mean
position and the mean velocity for both the exact solution and its numerical approximations. Then,
we prove that stochastic symplectic methods asymptotically preserve these two large deviations
principles, but nonsymplectic ones do not. This indicates that stochastic symplectic methods are
able to approximate well the exponential decay speed of the “hitting probability” of the mean position
and mean velocity of the stochastic oscillator. Finally, numerical experiments are performed to show
the superiority of stochastic symplectic methods in computing the large deviations rate functions.
To the best of our knowledge, this is the first result about applying the large deviations principle
to reveal the superiority of stochastic symplectic methods compared with nonsymplectic ones in the
existing literature.
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asymptotical preservation
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1. Introduction. A 2d-dimensional stochastic differential equation (SDE) is
called a stochastic Hamiltonian system if it can be written in the form

d

(
p
q

)
= J−1∇H0(p, q)dt+

m∑
r=1

J−1∇Hr(p, q) ◦ dWr(t), J =

[
0 Id
−Id 0

]
,(1.1)

where ◦ denotes the Stratonovich product, Hi, i = 0, 1, . . . ,m are smooth Hamil-
ton functions, and W = (W1, . . . ,Wm) is an m-dimensional Brownian motion on a
given complete filtered probability space (Ω,F , {Ft}t≥0,P). The phase flow of (1.1)
preserves the symplectic structure in phase space, i.e., dp(t) ∧ dq(t) = dp(0) ∧ dq(0),
a.s., for all t ≥ 0. In order to preserve the symplectic structure, a class of numeri-
cal methods called stochastic symplectic methods are proposed [18]. In recent years,
stochastic symplectic methods have received extensive attention, and large quantities
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SUPERIORITY OF SYMPLECTIC METHODS VIA LDPs 33

of numerical experiments show that stochastic symplectic methods possess excellent
long-time stability (see, e.g., [3, 5, 6, 9, 12, 15, 23, 24]). One approach to theoretically
explaining the superiority of stochastic symplectic methods is based on the techniques
of modified equations and backward error analysis (see [1, 2, 4, 10, 14, 22, 24, 25] and
references therein). Different from their approach, we try to apply the large deviations
principle (LDP) to discover the superiority of the stochastic symplectic methods in
this paper.

The large deviations principle is concerned with the exponential decay of prob-
abilities of rare events, which can be regarded as an extension or refinement of the
law of large numbers and central limit theorem. It is usually used to describe the
asymptotical behavior of stochastic processes for which large deviations estimates are
concerned. If a stochastic process {XT }T>0 satisfies an LDP with the rate function I,
then the hitting probability P (XT ∈ [a, a+ da]) decays exponentially, i.e., e−TI(a)da.
The rate function characterizes the fluctuations of the stochastic process {XT }T>0 in
the long-time limit and has a wide range of applications in engineering and physical
sciences (see, e.g., [13]). When a numerical method is applied to a given stochastic
differential equation, it is worthwhile to study whether the numerical method can
preserve asymptotically the decay rate e−TI .

Let {ZT }T>0 be a stochastic process associated with the exact solution of (1.1),
usually viewed as an observable of (1.1). For a numerical method {pn, qn}n≥0 ap-
proximating (1.1), let {ZT,N}N≥1 be a discrete approximation of {ZT }T>0 associ-
ated with the numerical method {pn, qn}n≥0. For example, one can take ZT =
1
T

∫ T
0
f(p(t), q(t))dt as an observable of (1.1) for some smooth function f . Then

ZT,N = 1
N

∑N−1
n=0 f(pn, qn) can be viewed as a discrete version of ZT . If {ZT }T>0

satisfies an LDP with the rate function I, one natural question is the following:
(Q1) Does {ZT,N}N≥1 satisfy the LDP with some rate function Ih for a fixed

step-size h?
If so, then {ZT }T>0 and {ZT,N}N≥1 formally satisfy

P (ZT ∈ [a, a+ da]) ≈ e−TI(a)da for sufficiently large T,(1.2)

P(ZT,N ∈ [a, a+ da]) ≈ e−NI
h(a)da = e−tNI

h(a)/hda(1.3)

for sufficiently large tN .

With T = tN being the observation scale, it is reasonable to use Ih/h to evaluate the
ability of the numerical method to preserve the large deviations rate function. Hence,
another meaningful question is the following:

(Q2) If {ZT,N}N≥1 satisfies an LDP with the rate function Ih, could Ih/h approx-
imate I well for sufficiently small h?

Concerning the above questions, we give the following definition on the asymptotical
or even exact preservation of LDP.

Definition 1.1. Let E be a Polish space, i.e., complete and separable metric
space. Let {ZT }T>0 be a stochastic process associated with the exact solution of (1.1).
Let {ZT,N}N≥1 be a discrete approximation of {ZT }T>0, associated with some numer-
ical method {pn, qn}n≥0 for (1.1). Assume that {ZT }T>0 and {ZT,N}N≥1 satisfy the
LDPs on E with the rate functions I and Ih, respectively. We call Ihmod := Ih/h the
modified rate function of Ih. Moreover, the numerical method {pn, qn}n≥0 is said to
asymptotically preserve the LDP of {ZT }T>0 if

(1.4) lim
h→0

Ihmod(y) = I(y) ∀ y ∈ E.
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34 C. CHEN, J. HONG, D. JIN, AND L. SUN

In particular, the numerical method {pn, qn}n≥0 is said to exactly preserve the LDP
of {ZT }T>0 if for all sufficiently small step-size h, Ihmod(·) = I(·).

Concerning that the linear stochastic oscillator is one of the typical stochastic
Hamiltonian systems, we take it as the test equation in this paper to obtain precise
results about the rate functions of LDPs for both the exact solution and a class of
numerical methods (see (3.1)). The discretization (3.1) is a class of one-step methods
including the common numerical methods for the linear stochastic oscillator in the
literature (see the review article [21]). Based on the Gärtner–Ellis theorem, we first
study the LDPs of the mean position and the mean velocity for both the exact solution
of the linear stochastic oscillator and its numerical approximations. Then, by giving
the conditions which make numerical methods have at least first order convergence in
the mean-square sense, we prove that stochastic symplectic methods in the form of
(3.1) asymptotically preserve these two LDPs. However, it is shown that neither of the
two LDPs is preserved asymptotically by the considered nonsymplectic methods based
on the tail estimation of Gaussian random variables. To the best of our knowledge,
this is the first result about using LDP to show the superiority of stochastic symplectic
methods compared with nonsymplectic ones.

The paper is organized as follows. In section 2, we give some basic concepts
about the LDP. For the linear stochastic oscillator, we introduce the mean position

AT = 1
T

∫ T
0
Xt dt and the mean velocity BT = XT

T for each T > 0 with {Xt}t≥0

being the exact solution. Also, the LDPs for both {AT }T>0 and {BT }T>0 are es-
tablished based on the Gärtner–Ellis theorem. Section 3 studies the LDP for the
discrete mean position {AN}N≥1 (see (3.2)) of the general numerical methods for the
fixed sufficiently small step-size. In section 4, we derive the pointwise convergence
of the modified rate functions of {AN}N≥1 as step-size tends to zero and show that
symplectic methods asymptotically preserve the LDP for {AT }T>0. In section 5, by
following the ideas of dealing with {AN}N≥1, we investigate the LDP for the discrete
mean velocity {BN}N≥1 (see (5.1)) and show that symplectic methods asymptoti-
cally preserve the LDP for {BT }T>0. In section 6, we verify our theoretical results
by discussing some concrete numerical methods and construct some methods pre-
serving exactly the LDPs for {AT }T>0 or {BT }T>0. These imply the superiority of
symplectic methods in preserving the LDPs for {AT }T>0 and {BT }T>0 of the linear
stochastic oscillator. We perform numerical experiments to verify our theoretical re-
sults in section 7. Finally, in section 8, we give our conclusions and propose several
open problems for future study.

2. LDPs for {AT }T>0 and {BT }T>0. In this section, we aim to prove that
both the mean position {AT }T>0 and mean velocity {BT }T>0 of the exact solution
of our considered stochastic oscillator satisfy the LDPs. Before showing the LDPs
of {AT }T>0 and {BT }T>0, we introduce some preliminaries upon the theory of large
deviations, which can be found in [11, 16].

Definition 2.1. I : E → [0,∞] is called a rate function if it is lower semicon-
tinuous, where E is a Polish space. If all level sets I−1([−∞, a]), a ∈ [0,∞), are
compact, then I is called a good rate function.

Definition 2.2. Let I be a rate function and (µε)ε>0 be a family of probability
measures on E. We say that (µε)ε>0 satisfies an LDP with the rate function I if

(LDP1) lim inf
ε→0

ε log(µε(U)) ≥ − inf I(U) for every open U ⊂ E,

(LDP2) lim sup
ε→0

ε log(µε(C)) ≤ − inf I(C) for every closed C ⊂ E.
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Based on Definition 2.2, one can give the definition of LDP for a family of ran-
dom variables similarly. Namely, let {Xε}ε>0 be a family of random variables from
(Ω,F ,P) to (E,B(E)). {Xε}ε>0 is said to satisfy an LDP with the rate function I
if its distribution (P ◦ X−1

ε )ε>0 satisfies (LDP1) and (LDP2) in Definition 2.2 (see,
e.g., [7, 11]).

The Gärtner–Ellis theorem plays an important role in dealing with the LDPs for
a family of random variables. When utilizing this theorem, one needs to examine
whether the logarithmic moment generating function is essentially smooth.

Definition 2.3. A convex function Λ : Rd → (−∞,∞] is essentially smooth if
(1) D◦Λ is nonempty, where D◦Λ is the interior of DΛ := {x ∈ Rd : Λ(x) <∞};
(2) Λ(·) is differentiable throughout D◦Λ;
(3) Λ(·) is steep, namely, limn→∞ |∇Λ(λn)| =∞ whenever {λn} is a sequence in

D◦Λ converging to a boundary point of D◦Λ.

Theorem 2.4 (Gärtner–Ellis). Let {Xn}n∈N be a sequence of random vectors
taking values in Rd. Assume that for each λ ∈ Rd, the logarithmic moment generating
function, defined as the limit Λ(λ) , limn→∞

1
n log(Een〈λ,Xn〉), exists as an extended

real number. Further, assume that the origin belongs to D◦Λ. If Λ is an essentially
smooth and lower semicontinuous function, then the LDP holds for {Xn}n∈N with
the good rate function Λ∗(·). Here Λ∗(x) = supλ∈Rd{〈λ, x〉 − Λ(λ)}, x ∈ Rd, is the
Fenchel–Legendre transform of Λ(·).

It is known that the key point of the Gärtner–Ellis theorem is to study the log-
arithmic moment generating function. Moreover, we would like to mention that the
Gärtner–Ellis theorem is valid in the case of continuous parameter family {Xε}ε>0

(see the remarks of [11, Theorem 2.3.6]).
The motivation of this paper is to explain the superiority of stochastic symplectic

methods, by studying the LDPs of numerical methods for a linear stochastic oscillator
Ẍt + Xt = αẆt with α > 0, and Wt being a one-dimensional standard Brownian
motion defined on (Ω,F , {Ft}t≥0,P). The linear stochastic oscillator can be rewritten
as a two-dimensional stochastic Hamiltonian system

(2.1) d

(
Xt

Yt

)
=

(
0 1
−1 0

)(
Xt

Yt

)
dt+ α

(
0
1

)
dWt,

(
X0

Y0

)
=

(
x0

y0

)
,

whose phase flow preserves symplectic structure. Namely, the oriented areas of the
phase flow are invariant:

dXt ∧ dYt = dx0 ∧ dy0 ∀ t ≥ 0,

where the exact solution (Xt, Yt) of (2.1) (see, e.g., [17, Chapter 8]) is

Xt = x0 cos(t) + y0 sin(t) + α

∫ t

0

sin(t− s)dWs,(2.2)

Yt = −x0 sin(t) + y0 cos(t) + α

∫ t

0

cos(t− s)dWs.

To inherit the symplecticity of this stochastic oscillator, different kinds of symplectic
methods have been constructed (see [8, 21] and references therein).

For SDE (2.1), we introduce the so-called mean position,

(2.3) AT =
1

T

∫ T

0

Xt dt ∀ T > 0,
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and the mean velocity,

(2.4) BT =
XT

T
∀ T > 0.

Both AT and BT are important observables, and they have many applications in
physics. For example, the Ornstein–Uhlenbeck process is often used to describe the
velocity of a particle moving in a random environment [19]. In this case, AT can be

interpreted as the mean value of the displacement process
∫ T

0
Xt dt, and BT as the

mean value of velocity Xt on the time interval [0, T ] (see also [13]). Next, by means of
the Gärtner–Ellis theorem, we show that both the mean position {AT }T>0 and mean
velocity {BT }T>0 of the exact solution satisfy the LDPs.

Theorem 2.5. {AT }T>0 satisfies an LDP with the good rate function I(y) = y2

3α2 ,
i.e.,

lim inf
T→∞

1

T
log(P(AT ∈ U)) ≥ − inf

y∈U
I(y) for every open U ⊂ R,

lim sup
T→∞

1

T
log(P(AT ∈ C)) ≤ − inf

y∈C
I(y) for every closed C ⊂ R.

Proof. It follows from (2.2), (2.3), and the stochastic Fubini theorem that

TAT =

∫ T

0

Xtdt = x0 sin(T ) + y0(1− cos(T )) + α

∫ T

0

[
1− cos(T − s)

]
dWs.(2.5)

Thus, we have E [TAT ] = x0 sin(T ) + y0(1− cos(T )), and

Var [TAT ] = α2

∫ T

0

[
1− cos(T − s)

]2
ds = α2

[
3T

2
− 2 sin(T ) +

sin(2T )

4

]
.

Hence λTAT ∼ N (λE[TAT ], λ2Var[TAT ]) for every λ ∈ R. It follows from the char-

acteristic function of λTAT that EeλTAT = eλE[TAT ]+λ2

2 Var[TAT ]. In this way, we
obtain the logarithmic moment generating function Λ(λ) = limT→∞

1
T logEeλTAT =

3α2

4 λ2, which means that Λ(·) is an essentially smooth, lower semicontinuous func-
tion. Moreover, we have that the origin 0 belongs to D◦Λ = R. By Theorem 2.4, we
obtain that {AT }T>0 satisfies an LDP with the good rate function I(y) = Λ∗(y) =

supλ∈R{yλ− Λ(λ)} = y2

3α2 .

Notice that LDP for {AT }T>0 is independent of the initial value (x0, y0) of the
stochastic oscillator (2.1). Theorem 2.5 indicates that, for any initial value (x0, y0),
the probability that the mean position {AT }T>0 hits the interval [a, a + da] decays

exponentially and formally satisfies P (AT ∈ [a, a+ da]) ≈ e−TI(a)da = e−T
a2

3α2 da for
sufficiently large T .

Next, we give the result of the LDP for {BT }T>0 in the following theorem, whose
proof is analogous to that of Theorem 2.5 and hence is omitted.

Theorem 2.6. {BT }T>0 satisfies an LDP with the good rate function J(y) = y2

α2 .

The above two theorems give the LDPs of {AT }T>0 and {BT }T>0. For a numer-
ical approximation {(xn, yn)}n≥0 of the linear stochastic oscillator (2.1), two natural

questions are these: Do its discrete mean position AN = 1
N

∑N−1
n=0 xn and discrete

mean velocity BN = xN
Nh satisfy similar LDPs as in continuous case? Is the method

able to asymptotically preserve the LDPs of {AT }T>0 and {BT }T>0 in the sense that
the modified rate functions converge to the rate functions of the exact solution? The
next several sections of this paper are devoted to answering the above questions.
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3. LDP for discrete mean position {AN}N≥1. In this section, we study
the LDP for the discrete mean position of general numerical methods. We show that
symplectic methods and nonsymplectic ones satisfy different types of LDPs based on
Theorem 2.4.

Let {(xn, yn)}n≥0 be the discrete approximations at tn = nh with xn ≈ Xtn ,
yn ≈ Ytn , where h > 0 is the given step-size. Following [21], we consider the general
numerical methods in form of

(3.1)

(
xn+1

yn+1

)
= A

(
xn
yn

)
+αb∆Wn :=

(
a11 a12

a21 a22

)(
xn
yn

)
+α

(
b1
b2

)
∆Wn

with ∆Wn = Wtn+1
−Wtn . In fact, the real matrix A and the real vector b depend

on both the method and the constant step-size h. In addition, we require b21 + b22 6= 0,
which is natural since an effective numerical method for (2.1) must depend on the
Brownian motion. In the previous section, we derive the LDP for the mean position
{AT }T>0 of the continuous system (2.1). In what follows, we consider the LDP for
discrete mean position {AN}N≥1 of the method (3.1) and study how closely the LDP
for {AN}N≥1 approximates the LDP for {AT }T>0. We recall that AN is defined as

(3.2) AN =
1

N

N−1∑
n=0

xn, N = 1, 2, . . . .

Our idea is to use Theorem 2.4 to show the LDP of {AN}N≥1. Hence, we first derive
the logarithmic moment generating function Λh(λ) := limN→∞

1
N logEeλNAN for a

fixed appropriate step-size h. This can be done by means of the general formula of
{xn}n≥1. For this end, we give a useful lemma (see Appendix A for its proof).

Lemma 3.1. For arbitrary θ ∈ (0, 2π), N ∈ N+, and a ∈ R, it holds that

N∑
n=1

sin(nθ)an =
a sin(θ)− aN+1 sin((N + 1)θ) + aN+2 sin(Nθ)

1− 2a cos(θ) + a2
.(3.3)

In particular, if a = 1, then

N∑
n=1

sin(nθ) =
cos
(
θ
2

)
− cos((N + 1

2 )θ)

2 sin
(
θ
2

) .(3.4)

In order to give the general formula of {xn}n≥1, we suppose

(A1) 4 det(A)− (tr(A))2 > 0.

Then using Lemma 3.1, we have the following proposition.

Proposition 3.2. For the method (3.1) satisfying the assumption (A1), we have
that for any n,N ≥ 1,

xn =
(
a11α̂n−1 + β̂n−1

)
x0 + a12α̂n−1y0

+ α

n−1∑
j=0

[
b1α̂n−1−j + (a12b2 − a22b1)α̂n−2−j

]
∆Wj ,(3.5)

NAN =
(

1 + a11S
α̂
N + Sβ̂N

)
x0 + a12S

α̂
Ny0 + α

N−2∑
j=0

cj∆Wj .(3.6)

Here, α̂k = (det(A))k/2 sin((k+1)θ)
sin(θ) and β̂k = −(det(A))(k+1)/2 sin(kθ)

sin(θ) for any integer k,
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with θ ∈ (0, π) satisfying

(3.7) cos(θ) =
tr(A)

2
√

det(A)
, sin(θ) =

√
4 det(A)− (tr(A))2

2
√

det(A)
.

And

Sα̂N =
sin(θ)−

(√
det(A)

)N−1

sin(Nθ) +
(√

det(A)
)N

sin((N − 1)θ)

sin(θ)
(
1− 2

√
det(A) cos(θ) + det(A)

) ,

(3.8)

Sβ̂N = −
det(A) sin(θ)−

(√
det(A)

)N
sin((N − 1)θ) +

(√
det(A)

)N+1

sin((N − 2)θ)

sin(θ)
(
1− 2

√
det(A) cos(θ) + det(A)

) ,

(3.9)

cj =
b1

sin(θ)
sin((N − 1− j)θ)

(√
det(A)

)N−2−j
+
b1 + a12b2 − a22b1

sin(θ)

×
sin(θ)−

(√
det(A)

)N−2−j
sin((N − 1− j)θ) +

(√
det(A)

)N−1−j
sin((N − 2− j))θ)

1− 2
√

det(A) cos(θ) + det(A)
.

(3.10)

Proof. Denote Mn = ( xn+1
xn ) for n ≥ 1. It follows from the recurrence (3.1) that

Mn = DMn−1 + rn, n ≥ 1 with

D =

(
tr(A) −det(A)

1 0

)
, rn =

(
α (b1∆Wn + (a12b2 − a22b1)∆Wn−1)

0

)
,

where tr(A) and det(A) denote the trace and the determinant of A, respectively. In
this way, we have Mn = DnM0 +

∑n
j=1D

n−jrj , n ≥ 1. Under the assumption (A1),
matrix D has two complex-valued eigenvalues

λ± =
tr(A)

2
± i

√
4 det(A)− (tr(A))2

2
=
√

det(A)e±iθ, i2 = −1,

where θ satisfies (3.7).
It follows from the expression of Mn (one can refer to [21]) that

xn+1 = α̂nx1 + β̂nx0 + α
n∑
j=1

α̂n−j

[
b1∆Wj + (a12b2 − a22b1)∆Wj−1

]
, n ≥ 0.

Since x1 = a11x0 + a12y0 + αb1∆W0, α̂−1 = 0, and α̂0 = 1, for n ≥ 1,

xn =
(
a11α̂n−1 + β̂n−1

)
x0 + a12α̂n−1y0 + αb1α̂n−1∆W0

+ α

n−1∑
j=1

b1α̂n−1−j∆Wj + α

n−2∑
j=0

(a12b2 − a22b1)α̂n−2−j∆Wj

=
(
a11α̂n−1 + β̂n−1

)
x0 + a12α̂n−1y0

+ α

n−1∑
j=0

[
b1α̂n−1−j + (a12b2 − a22b1)α̂n−2−j

]
∆Wj .
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By (3.2) and (3.5), we have

NAN = x0 +

N−1∑
n=1

xn =
(

1 + a11S
α̂
N + Sβ̂N

)
x0 + a12S

α̂
Ny0 + α

N−2∑
j=0

cj∆Wj ,(3.11)

where Sα̂N =
∑N−2
n=0 α̂n, Sβ̂N =

∑N−2
n=0 β̂n and

cj :=

N−1∑
n=j+1

[
b1α̂n−1−j + (a12b2 − a22b1)α̂n−2−j

]
= b1α̂N−2−j + (b1 + a12b2 − a22b1)Sα̂N−1−j .(3.12)

Finally, by means of (3.3), we obtain the explicit expressions of Sα̂N , Sβ̂N , and cj as
given in (3.8), (3.9), and (3.10), respectively. This completes the proof.

Next, we study the LDP of {AN}N≥1 for symplectic methods and nonsymplectic
ones, respectively. It is known that the method (3.1) preserves the symplectic struc-
ture, i.e., dxn+1∧dyn+1 = dxn∧dyn, if and only if det(A) = 1. (In fact, this condition
is equivalent to the fact that method (3.1) preserves the phase volume.) In addition,
for nonsymplectic methods, we exclude the case det(A) > 1, where the logarithmic
moment generating function Λh does not exist. This is to say, we need to deal with
the case det(A) = 1 and the case det(A) < 1 separately.

3.1. LDP of {AN}N≥1 for symplectic methods. In this part, we derive
the LDP for {AN}N≥1 of the method (3.1) in the case of preserving the symplec-
ticity. By (3.6), NAN is Gaussian. Hence, Λh(λ) = limN→∞

1
N logEeλNAN =

limN→∞
1
N [λE(NAN ) + 1

2λ
2Var(NAN )]. In order to get the expression of Λh, it

suffices to give the estimates of E(NAN ) and Var(NAN ) with respect to N .
Hereafter we use the notation K(a1, . . . , am) to denote some constant dependent

on the parameters a1, . . . , am but independent of N , which may vary from one line to
another. We assume that

(A2) det(A) = 1.

Under (A2), we have α̂n = sin((n+1)θ)
sin(θ) , β̂n = − sin(nθ)

sin(θ) . Then by (3.4) and (3.12), we

obtain

Sα̂N =
cos
(
θ
2

)
− cos((N − 1

2
)θ)

2 sin(θ) sin
(
θ
2

) , Sβ̂N = −
cos
(
θ
2

)
− cos((N − 3

2
)θ)

2 sin(θ) sin
(
θ
2

) ,(3.13)

cj =
(b1 + a12b2 − a22b1) cos

(
θ
2

)
− b1 cos((N − 1

2
− j)θ)− (a12b2 − a22b1) cos((N − 3

2
− j)θ)

2 sin(θ) sin
(
θ
2

) .

(3.14)

By (3.13), it holds that |Sα̂N |+ |S
β̂
N | ≤ K(θ) for each N ≥ 2. Further, it follows from

(3.6) and (3.14) that

|E[NAN ]| =
∣∣∣(1 + a11S

α̂
N + Sβ̂N

)
x0 + a12S

α̂
Ny0

∣∣∣ ≤ K(x0, y0, θ),(3.15)

Var[NAN ] = α2h

N−2∑
j=0

c2j =
α2h

4 sin2(θ) sin2
(
θ
2

) N−2∑
j=0

c̃2j(3.16)
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with

c̃2j = (b1+a12b2−a22b1)2 cos2

(
θ

2

)
+

1

2
b21+

1

2
(a12b2−a22b1)2+b1(a12b2−a22b1) cos(θ)+Rj ,

where

Rj =
b21
2

cos((2N − 1− 2j)θ) +
(a12b2 − a22b1)2

2
cos((2N − 3− 2j)θ)

− 2b1(b1 + a12b2 − a22b1) cos

(
θ

2

)
cos

(
(2N − 1− 2j)θ

2

)
− 2(b1 + a12b2 − a22b1)(a12b2 − a22b1) cos

(
θ

2

)
cos

(
(2N − 3− 2j)θ

2

)
+ b1(a12b2 − a22b1) cos((2N − 2− 2j)θ).

We claim |
∑N−2
j=0 Rj | ≤ K(θ). In detail, by

∑N
n=1 cos((2n+1)θ) = sin((2N+2)θ)−sin(2θ)

2 sin(θ) ,

we have∣∣∣∣∣∣
N−2∑
j=0

cos((2N − 1− 2j)θ)

∣∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
n=1

cos((2n+ 1)θ)

∣∣∣∣∣ =

∣∣∣∣ sin(2Nθ)− sin(2θ)

2 sin(θ)

∣∣∣∣ ≤ K(θ).

Analogously, we obtain

∣∣∣∣N−2∑
j=0

cos((2N − 3− 2j)θ)

∣∣∣∣+

∣∣∣∣N−2∑
j=0

cos(
(2N − 1− 2j)θ

2
)

∣∣∣∣(3.17)

+

∣∣∣∣N−2∑
j=0

cos(
(2N − 3− 2j)θ

2
)

∣∣∣∣+

∣∣∣∣N−2∑
j=0

cos((2N − 2− 2j)θ)

∣∣∣∣ ≤ K(θ),

which proves the above claim.
Based on (3.15), (3.16), (3.1), and |

∑N−2
j=0 Rj | ≤ K(θ), we have

Λh(λ) := lim
N→∞

1

N
logEeλNAN

=
α2hλ2

8 sin2(θ) sin2
(
θ
2

) [(b1 + a12b2 − a22b1)2 cos2

(
θ

2

)
+

1

2
b21

+
1

2
(a12b2 − a22b1)2 + b1(a12b2 − a22b1) cos(θ)

]
.(3.18)

As a result of (3.7) with det(A) = 1, it holds that

cos(θ) =
tr(A)

2
, sin(θ) =

√
4− (tr(A))2

2
,

sin2

(
θ

2

)
=

1− cos(θ)

2
=

2− tr(A)

4
, cos2

(
θ

2

)
=

1 + cos(θ)

2
=

2 + tr(A)

4
.(3.19)
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Substituting (3.19) into (3.18) yields that

Λh(λ) =
α2hλ2

2(2 + tr(A))(2− tr(A))2

[
(b1 + a12b2 − a22b1)2(4 + tr(A))

− 2b1(a12b2 − a22b1)(2− tr(A))
]
.(3.20)

In order to show that Λh is essentially smooth. We need to use the following lemma,
whose proof is given in Appendix B.

Lemma 3.3. Under assumptions (A1) and (A2), we have
(1) b21 + (a12b2 − a22b1)2 6= 0;
(2) (b1 + a12b2 − a22b1)2(4 + tr(A))− 2b1(a12b2 − a22b1)(2− tr(A)) > 0.

Lemma 3.3(2) means that Λh is essentially smooth. It follows from Theorem 2.4
that {AN}N≥1 satisfies an LDP with the good rate function

Ih(y) = sup
λ∈R
{yλ− Λh(λ)}

=
(2 + tr(A))(2− tr(A))2y2

2α2h
[
(b1 + a12b2 − a22b1)2(4 + tr(A))− 2b1(a12b2 − a22b1)(2− tr(A))

] .(3.21)

Finally, we acquire the following theorem.

Theorem 3.4. If the numerical method (3.1) for approximating the SDE (2.1)
satisfies assumptions (A1) and (A2), then its mean position {AN}N≥1 satisfies an
LDP with the good rate function given by (3.21).

Remark 3.5. Theorem 3.4 indicates that to make the LDP hold for {AN}N≥1,
the step-size h needs to be restricted such that assumptions (A1) and (A2) hold.
Moreover, the rate function Ih(y) does not depend on the initial value (x0, y0). That
is to say, for appropriate step-size h and arbitrary initial value, {AN}N≥1 formally

satisfies P(AN ∈ [a, a+ da]) ≈ e−NIh(a)da for sufficiently large N .

3.2. LDP of {AN}N≥1 for nonsymplectic methods. In this part, we show
the LDP for {AN}N≥1 of method (3.1) under the following assumption:

(A3) 0 < det(A) < 1.

Under the assumption (A3), one immediately concludes from (3.8), (3.9), and the

boundedness of sin(·) that |Sα̂N |+ |S
β̂
N | ≤ K(θ,A) for all N ≥ 2, which gives

(3.22)
∣∣∣E[NAN ]

∣∣∣ ≤ K(x0, y0, θ, A).

It follows from (3.6) and (3.10) that

(3.23) Var(NAN ) = α2h

N−2∑
j=0

c2j ,

where

(3.24) c2j =

(
b1 + a12b2 − a22b1

1− 2
√

det(A) cos(θ) + det(A)

)2

+ R̃j
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with

R̃j =
b21 sin2((N − 1− j)θ)(det(A))N−2−j

sin2(θ)
+

(b1 + a12b2 − a22b1)2

sin2(θ)
(

1− 2
√

det(A) cos(θ) + det(A)
)2

×
[
(det(A))N−2−j sin2((N − 1− j)θ) + (det(A))N−1−j sin2((N − 2− j)θ)

− 2 sin(θ)
(√

det(A)
)N−2−j

sin((N − 1− j)θ)

+ 2 sin(θ)
(√

det(A)
)N−1−j

sin((N + 2− j)θ)

− 2
(√

det(A)
)2N−3−2j

sin((N − 1− j)θ) sin((N − 2− j)θ)
]

+
2b1(b1 + a12b2 − a22b1)

sin2(θ)
(

1− 2
√

det(A) cos(θ) + det(A)
)

[√
det(A)

N−2−j
sin(θ) sin((N − 1− j)θ)− (det(A))N−2−j sin2((N − 1− j)θ))

+
(√

det(A)
)2N−3−2j

sin((N − 1− j)θ) sin((N − 2− j)θ)
]
.

Further, we have

N−2∑
j=0

[
(det(A))N−2−j + (det(A))N−1−j

]
≤ 2

N∑
j=0

(det(A))j ,

N−2∑
j=0

[(√
det(A)

)N−2−j
+
(√

det(A)
)N−1−j

]
≤ 2

N∑
j=0

(√
det(A)

)j
,

N−2∑
j=0

(√
det(A)

)2N−3−2j

=

N−1∑
j=1

(√
det(A)

)2j−1

≤ 1√
det(A)

N∑
j=0

(det(A))j .

It follows from the boundedness of sin(·) and det(A) < 1 that

(3.25)

∣∣∣∣∣∣
N−2∑
j=0

R̃j

∣∣∣∣∣∣ ≤ K(θ,A)

N∑
j=0

[(√
det(A)

)j
+ (det(A))j

]
≤ K̃(θ,A),

where K̃(θ,A) is a constant dependent on θ and A but independent of N . Combining
(3.22), (3.23), (3.24), and (3.25) leads to

Λ̃h(λ) = lim
N→∞

1

N
logEeλNAN

=
α2hλ2

2
lim
N→∞

1

N

( b1 + a12b2 − a22b1

1− 2
√

det(A) cos(θ) + det(A)

)2

(N − 1) +

N−2∑
j=0

R̃j


=
α2hλ2

2

(
b1 + a12b2 − a22b1

1− 2
√

det(A) cos(θ) + det(A)

)2

.
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If we assume that

(A4) b1 + a12b2 − a22b1 6= 0,

then it follows from Theorem 2.4 that {AN}N≥1 satisfies an LDP with the good rate

function Ĩh(y) = y2

2α2h (
1−2
√

det(A) cos(θ)+det(A)

b1+a12b2−a22b1 )2 = y2

2α2h ( 1−tr(A)+det(A)
b1+a12b2−a22b1 )2, where we

have used (3.7) in the second equality. Finally, we obtain the following theorem.

Theorem 3.6. If the numerical method (3.1) for approximating the SDE (2.1)
satisfies assumptions (A1), (A3), and (A4), then its mean position {AN}N≥1 satisfies

an LDP with the good rate function Ĩh(y) = y2

2α2h ( 1−tr(A)+det(A)
b1+a12b2−a22b1 )2.

4. Asymptotical preservation for the LDP of {AT }T>0. In section 3, we
acquire the LDP for the discrete mean position {AN}N≥1 when the method (3.1)
is symplectic or nonsymplectic separately, for given appropriate step-size. In this
section, we study their asymptotical preservation for the LDP of {AT }T>0 as step-
size tends to 0 (see Definition 1.1). By Definition 1.1, we obtain the modified rate
functions of the rate functions appearing in Theorems 3.4 and 3.6, respectively, as
follows:

Ihmod(y) =
(2 + tr(A))(2− tr(A))2y2

2α2h2 [(b1 + a12b2 − a22b1)2(4 + tr(A))− 2b1(a12b2 − a22b1)(2− tr(A))]
,

(4.1)

Ĩhmod(y) =
y2

2α2h2

(
1− tr(A) + det(A)

b1 + a12b2 − a22b1

)2

.

(4.2)

It would fail to get the asymptotical convergence for Ihmod(y) and Ĩhmod(y) only by
means of assumptions (A1)–(A4) in two aspects: one is that both A and b are some
functions of step-size h, which are unknown unless a specific method is applied; the
other is that for some A and b, the numerical approximation may not be convergent
to the original system. A solution to this problem is studying the convergence on
finite interval of numerical methods. In what follows, we consider the mean-square
convergence of the method (3.1).

For the sake of simplicity, we first give some notation. Let R = O(hp) stand for
|R| ≤ Chp for all sufficiently small step-size h, where C is independent of h and may
vary from one line to another. f(h) ∼ hp means that f(h) and hp are equivalent
infinitesimal. Furthermore, ‖·‖2 denotes the 2-norm of a vector or matrix and ‖·‖F
denotes the Frobenius norm of a matrix.

Since (2.1) is driven by the additive noise, the mean-square convergence order
of general numerical methods which are known for the moment to approximate this
system is no less than 1. Hence, in what follows, we restrict (3.1) to the numerical
method with at least first order convergence in the mean-square sense. To give the
conditions about the mean-square convergence of the method (3.1), we introduce the
Euler–Maruyama method of form (3.1) with AEM =

(
1 h
−h 1

)
, bEM = ( 0

1 ) . Based
on the fundamental convergence theorem, we acquire the sufficient conditions which
make numerical method (3.1) have at least first order convergence in the mean-square
sense.

Theorem 4.1. If the numerical method (3.1) satisfies

(4.3)
∥∥A−AEM∥∥

F
= O(h2) and

∥∥b− bEM∥∥
2

= O(h),
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then its convergence order is at least 1 in the mean-square sense on any finite interval
[0, T0], i.e., supn≥0, nh≤T0

[E((xn −X(tn))2 + (yn − Y (tn))2)]1/2 ≤ K(T0)h.

We put the proof of this theorem into Appendix C. In fact, it is verified that (4.3)
is equivalent to

(B) |a11 − 1|+ |a22 − 1|+ |a12 − h|+ |a21 + h| = O(h2), and |b1|+ |b2 − 1| = O(h).

Using the assumption (B), we have the following lemma (its proof is given in Appen-
dix D), which is used to study whether method (3.1) asymptotically preserves the
LDPs for {AT }T>0 or {BT }T>0 of the exact solution.

Lemma 4.2. Under the assumption (B), the following properties hold:
(1) tr(A)→ 2 as h→ 0;
(2) (1− tr(A) + det(A)) ∼ h2;
(3) (b1 + a12b2 − a22b1) ∼ h.

By Lemma 4.2, we obtain the convergence of the modified rate functions in (4.1)
and (4.2).

Case 1: Let (A1), (A2), and (B) hold. Noting det(A) = 1 in this case, Lemma 4.2(2)
yields (2− tr(A)) ∼ h2. Hence,

(4.4) lim
h→0

b1(a12b2 − a22b1) (2− tr(A))

h2
= 0.

It follows from Lemma 4.2, (4.1), and (4.4) that
lim
h→0

Ihmod(y)

=
y2

2α2

limh→0 (2 + tr(A))

limh→0(4 + tr(A))(b1 + a12b2 − a22b1)2/h2 − 2 limh→0 b1(a12b2 − a22b1)(2− tr(A))/h2

=
y2

3α2
.

(4.5)

Case 2: Let (A1), (A3), (A4), and (B) hold. According to (4.2) and Lemma 4.2,

we have limh→0 Ĩ
h
mod = y2

2α2 limh→0
(h2)2

h2·h2 = y2

2α2 . Therefore, by Definition 1.1, we get
the following two theorems.

Theorem 4.3. For the numerical method (3.1) approximating the stochastic os-
cillator (2.1), if assumptions (A1) and (A2) hold, then we have the following:

(1) The method (3.1) is symplectic.
(2) The discrete mean position {AN}N≥1 of method (3.1) satisfies an LDP with

the good rate function
(4.6)

Ih(y) =
(2 + tr(A))(2− tr(A))2y2

2α2h
[
(b1 + a12b2 − a22b1)2(4 + tr(A))− 2b1(a12b2 − a22b1)(2− tr(A))

] .
(3) Moreover, if the assumption (B) holds, then method (3.1) asymptotically pre-

serves the LDP of {AT }T>0, i.e., the modified rate function Ihmod(y) = Ih(y)/h satis-
fies

lim
h→0

Ihmod(y) = I(y) ∀ y ∈ R,

where I(·) is the rate function of LDP for {AT }T>0.
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Theorem 4.4. For the numerical method (3.1) approximating the stochastic os-
cillator (2.1), if assumptions (A1), (A3), and (A4) hold, then we have the following:

(1) The method (3.1) is nonsymplectic.
(2) The discrete mean position {AN}N≥1 of method (3.1) satisfies an LDP with

the good rate function Ĩh(y) = y2

2α2h ( 1−tr(A)+det(A)
b1+a12b2−a22b1 )2.

(3) Moreover, if the assumption (B) holds, then method (3.1) does not asymptot-

ically preserve the LDP of {AT }T>0, i.e., for y 6= 0, limh→0 Ĩ
h
mod(y) 6= I(y), where

Ĩhmod(y) = Ĩh(y)/h, and I(·) is the rate function of LDP for {AT }T>0.

Remark 4.5. Theorems 4.3 and 4.4 indicate that under appropriate conditions,
the symplectic methods asymptotically preserve the LDP for the mean position
{AT }T>0 of original system (2.1), while the nonsymplectic methods do not. This
implies that, in comparison with nonsymplectic methods, symplectic methods have
long-time stability in the aspect of preserving the LDP for the mean position.

5. LDP for discrete mean velocity {BN}N≥1. In section 2, we obtain the
LDP for the mean velocity {BT }T>0 of the original system (2.1). In this section, fol-
lowing the ideas of dealing with the discrete mean position, we investigate the LDP for
the discrete mean velocity. That is to say, we first prove the LDP of the discrete mean
velocity based on the Gärtner–Ellis theorem for a fixed appropriate step-size h. Then,
we derive the limits of the modified rate functions by means of the assumption (B).

We consider the numerical approximation of BT = XT
T at tN = Nh. Noting that

xN is used to approximate XtN in terms of the numerical method (3.1), we define
discrete mean velocity as

(5.1) BN =
xN
Nh

, N = 1, 2, . . . .

In what follows, we study the LDP for {BN}N≥1 of method (3.1) and its asymp-
totical preservation for LDP of {BT }T>0. Similar to the arguments on {AN}N≥1,
we introduce the modified rate function to characterize how the LDP for {BN}N≥1

approximates the LDP for {BT }T>0.
We still assume that (A1) holds. In this case, the equality (3.5) holds. Then

xN =
(
a11α̂N−1 + β̂N−1

)
x0 + a12α̂N−1y0

+ α

N−1∑
n=0

[
b1α̂N−1−n + (a12b2 − a22b1)α̂N−2−n

]
∆Wn

(5.2)

with

α̂n = (det(A))
n/2 sin((n+ 1)θ)

sin(θ)
, β̂n = − (det(A))

n+1
2

sin(nθ)

sin(θ)
.

According to (5.2), xN is a Gaussian random variable whose expectation is

E(xN ) =

(
a11 (det(A))

N−1
2

sin(Nθ)

sin(θ)
− (det(A))

N
2

sin((N − 1)θ)

sin(θ)

)
x0

+ a12 (det(A))
N−1

2
sin(Nθ)

sin(θ)
y0.

If 0 < det(A) ≤ 1, then |E(xN )| ≤ K(θ), which leads to

(5.3) lim
N→∞

E(xN )

N
= 0.
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From (5.2) and the fact α̂−1 = 0, we get

Var(xN ) = α2h

N−1∑
n=0

[
b1α̂N−1−n + (a12b2 − a22b1)α̂N−2−n

]2
= α2h

[(
b21 + (a12b2 − a22b1)2

)N−2∑
n=0

α̂2
n + b21α̂N−1

+2b1(a12b2 − a22b1)

N−1∑
n=1

α̂nα̂n−1

]
.(5.4)

Further, we have

N−2∑
n=0

α̂2
n =

N−2∑
n=0

(det(A))n sin2((n+ 1)θ)

sin2(θ)
,(5.5)

2

N−1∑
n=1

α̂nα̂n−1 =
1

sin2(θ)

N−1∑
n=1

(det(A))
2n−1

2 (cos(θ)− cos((2n+ 1)θ)) .(5.6)

As is analogous to the treatment of {AN}N≥1, we deal with symplectic methods
(det(A) = 1) and nonsymplectic ones (0 < det(A) < 1), respectively.

5.1. LDP of {BN}N≥1 for symplectic methods. In this part, we study the
LDP for {BN}N≥1 of symplectic methods, so we assume that (A2) holds. Based on
det(A) = 1, (5.5), and (5.6), we have

N−2∑
n=0

α̂2
n =

1

sin2(θ)

N−1∑
n=1

sin2(nθ) =
1

sin2(θ)

(
N − 1

2
− sin((2N − 1)θ)− sin(θ)

4 sin(θ)

)
(5.7)

and

2

N−1∑
n=1

α̂nα̂n−1 =
1

sin2(θ)

[
(N − 1) cos(θ)− sin(2Nθ)− sin(2θ)

2 sin(θ)

]
.(5.8)

Substituting (5.7) and (5.8) into (5.4) yields

Var(xN ) = α2h

[
b21 + (a12b2 − a22b1)2 + 2b1(a12b2 − a22b1) cos(θ)

2 sin2(θ)
(N − 1)

−
[
b21 + (a12b2 − a22b1)2

]
[sin((2N − 1)θ)− sin(θ)]

4 sin3(θ)
+
b21 sin2(Nθ)

sin2(θ)

− b1(a12b2 − a22b1)(sin(2Nθ)− sin(θ))

2 sin3(θ)

]
.(5.9)

Using (5.3), (5.9), and (3.7) with det(A) = 1, we have

Λh(λ) = lim
N→∞

1

N
logEeλNBN

=
α2λ2

[
(b1 + a12b2 − a22b1)2 − b1(a12b2 − a22b1)(2− tr(A))

]
(4− (tr(A))2)h

.(5.10)

Before proving that Λh is essentially smooth, we give the following lemma (see its
proof in Appendix E).
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Lemma 5.1. Under assumptions (A1) and (A2), it holds that (b1+a12b2−a22b1)2−
b1(a12b2 − a22b1)(2− tr(A)) > 0.

Lemma 5.1 shows that Λh(·) is essentially smooth and lower semicontinuous.
Then, using Theorem 2.4, we conclude that {BN}N≥1 satisfies an LDP with the good
rate function

(5.11) Jh(y) =
h
[
4− (tr(A))2

]
y2

4α2
[
(b1 + a12b2 − a22b1)2 − b1(a12b2 − a22b1)(2− tr(A))

] .
By Definition 1.1, the modified rate function is

(5.12) Jhmod(y) =

(
4− (tr(A))2

)
y2

4α2
[
(b1 + a12b2 − a22b1)2 − b1(a12b2 − a22b1)(2− tr(A))

] .
In what follows, we study the asymptotical convergence of Jhmod(·) as step-size

h tends to 0 based on the mean-square convergence condition. To this end, let the
assumption (B) hold. Then it follows from Lemma 4.2 that (2 − tr(A)) ∼ h2, (b1 +
a12b2 − a22b1) ∼ h. In addition, (B) implies that b1(a12b2 − a22b1)→ 0 as h→ 0. In
this way, we have

lim
h→0

Jhmod(y) =
2 + limh→0 tr(A)

4α2
[
limh→0

(b1+a12b2−a22b1)2

2−tr(A) − limh→0 b1(a12b2 − a22b1)
]y2 =

y2

α2
.

According to the above results, we write them into the following theorem.

Theorem 5.2. For the numerical method (3.1) approximating the stochastic os-
cillator (2.1), if assumptions (A1) and (A2) hold, then we have the following:

(1) The method (3.1) is symplectic.
(2) The discrete mean velocity {BN}N≥1 of method (3.1) satisfies an LDP with

the good rate function

Jh(y) =
h
[
4− (tr(A))2

]
y2

4α2
[
(b1 + a12b2 − a22b1)2 − b1(a12b2 − a22b1)(2− tr(A))

] .
(3) Moreover, if the assumption (B) holds, then method (3.1) asymptotically pre-

serves the LDP of {BT }T>0, i.e., the modified rate function Jhmod(y) = Jh(y)/h sat-
isfies

lim
h→0

Jhmod(y) = J(y) ∀ y ∈ R,

where J(·) is the rate function of the LDP for {BT }T>0.

5.2. LDP of {BN}N≥1 for nonsymplectic methods. In this part, we con-
sider the discrete mean velocity {BN}N≥1 of general nonsymplectic methods. We
study whether the LDP holds for {BN}N≥1. Let assumptions (A1) and (A3) hold.
Then, (5.5) and (5.6) satisfy, respectively,

N−2∑
n=0

α̂2
n ≤ K(θ)

N−2∑
n=0

(det(A))
n ≤ K1(θ),∣∣∣∣∣2

N−1∑
n=1

α̂nα̂n−1

∣∣∣∣∣ ≤ K(θ)

N−1∑
n=1

(det(A))
2n−1

2 ≤ K2(θ),
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where K1(θ) and K2(θ) are two constants dependent on θ but independent of N .

Additionally, it holds that |α̂N−1| = | (det(A))N−1 sin2(Nθ)
sin2(θ)

| ≤ K(θ). Thus, (5.4) satisfies

(5.13) |Var(xN )| ≤ α2hK(θ).

It follows from (5.3) and (5.13) that the logarithmic moment generating function is

(5.14) Λ̃h(λ) = lim
N→∞

1

N
logEeλNBN = lim

N→∞

1

N

[
λ

h
E(xN ) +

λ2

2h2
Var(xN )

]
= 0.

We note that Λ̃h(·) is not essentially smooth, for which Theorem 2.4 is not valid.
In our case, we can directly prove that the LDP holds for {BN}N≥1 of nonsymplectic
methods by the definition of LDP. We claim that {BN}N≥1 of nonsymplectic methods
satisfies the LDP with the good rate function:

(5.15) J̃h(y) =

{
0, y = 0,

+∞, y 6= 0.

We divide the proof of this claim into three steps.
Step 1: We show the limit behaviors of P(BN ≥ x0) and P(BN ≤ x0) for non-

symplectic methods.
We need to use the following fact: if X ∼ N (µ, σ2), then it follows from [16,

Lemma 22.2] that, for any x > µ,

(5.16) P (X ≥ x) = P

(
X − µ
σ

≥ x− µ
σ

)
≤ 1√

2π

σ

x− µ
e−

(x−µ)2

2σ2 .

In addition, for any x < µ,
(5.17)

P (X ≤ x) = P

(
X − µ
σ

≤ x− µ
σ

)
= P

(
X − µ
σ

≥ −x− µ
σ

)
≤ 1√

2π

σ

µ− x
e−

(x−µ)2

2σ2 .

Since BN = xN
Nh , we have BN ∼ N (E(xN )

Nh , Var(xN )
N2h2 ) with |E(xN )| ≤ K(θ) and

|Var(xN )| ≤ K(θ). Noting that limN→∞E(BN ) = 0, one has that for the given
x0 > 0, there exists some N0 such that E(BN ) < x0 for every N > N0. Accordingly,
it follows from (5.16) that

P (BN ≥ x0) ≤ 1√
2π

√
Var(xN )

Nhx0 −E(xN )
exp

{
− (Nhx0 −E(xN ))

2

2Var(xN )

}
∀ N > N0.

In this way, for every x0 > 0,

(5.18) lim
N→∞

1

N
log [P (BN ≥ x0)] = −∞.

Analogously, using (5.17), one has that for the given x0 < 0,

(5.19) lim
N→∞

1

N
log [P (BN ≤ x0)] = −∞.

Step 2: We prove the upper bound LDP (LDP2): For every closed C ⊂ R,

(5.20) lim sup
N→∞

1

N
logP(BN ∈ C) ≤ − inf J̃h(C).
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If 0 ∈ C, then it follows from (5.15) that inf J̃h(C) = 0. Since P(BN ∈ C) ≤ 1,
(5.20) naturally holds.

If 0 /∈ C, define x+ = inf(C
⋂

(0,+∞)) and x− = sup(C
⋂

(−∞, 0)). Then,
P(BN ∈ C) ≤ P(BN ≥ x+) + P(BN ≤ x−). In order to prove (5.20), we need to use
the following lemma (see [16, Lemma 23.9]).

Lemma 5.3. Let N ∈ N and aiε, i = 1, . . . , N , ε > 0, be nonnegative numbers.

Then lim supε→0 ε log
∑N
i=1 a

i
ε = maxi=1,...,N lim supε→0 ε log(aiε).

Using (5.18), (5.19), and Lemma 5.3 yields

lim sup
N→∞

1

N
logP(BN ∈ C)

≤ max

{
lim sup
N→∞

1

N
logP(BN ≥ x+), lim sup

N→∞

1

N
logP(BN ≤ x−)

}
= −∞.

Noting that 0 /∈ C, one obtains inf J̃h(C) = +∞. Thus, (5.20) also holds for this
case.

Step 3: We prove the lower bound LDP (LDP1): For every open U ⊂ R,

(5.21) lim inf
N→∞

1

N
logP(BN ∈ U) ≥ − inf J̃h(U).

If 0 /∈ U , then inf J̃h(U) = +∞. Since P(BN ∈ C) ≥ 0, (5.21) naturally holds.
If 0 ∈ U , then there exists some δ > 0 such that (−δ, δ) ⊂ U . Accordingly,

lim inf
N→∞

1

N
logP(BN ∈ U) ≥ lim inf

N→∞

1

N
logP(|BN | < δ).(5.22)

It follows from (5.18) that for arbitrary given M ∈ (−∞, 0), there exists some N1

such that for every N > N1, 1
N log [P (BN ≥ δ)] < M . Thus,

P (BN ≥ δ) ≤ eNM ∀ N > N1,

which leads to limN→∞P(BN ≥ δ) = 0. Similarly, utilizing (5.19) gives
limN→∞P(BN ≤ −δ) = 0. Hence, limN→∞P(|BN | < δ) = 1, which implies

lim
N→∞

1

N
logP(|BN | < δ) = 0.(5.23)

Combining (5.22) and (5.23), we have lim infN→∞
1
N logP(BN ∈ U) ≥ 0. Further,

since 0 ∈ U , inf J̃h(U) = 0. Hence, we prove (5.21).
Combining the above discussion, we deduce that {BN}N≥1 of nonsymplectic

methods satisfies the LDP with the good rate function J̃h given by (5.15) and the
modified rate function J̃hmod = J̃h/h = J̃h. Finally, we get the following theorem.

Theorem 5.4. For the numerical method (3.1) approximating the stochastic os-
cillator (2.1), if assumptions (A1) and (A3) hold, then we have the following:

(1) The method (3.1) is nonsymplectic.
(2) The discrete mean velocity {BN}N≥1 of method (3.1) satisfies an LDP with

the good rate function J̃h(y) =
{

0, y=0,
+∞, y 6=0.

(3) Method (3.1) does not asymptotically preserve the LDP of {BT }T>0, i.e., for

y 6= 0, limh→0 J̃
h
mod(y) 6= J(y), where J̃hmod(y) = J̃h(y)/h, and J(y) = y2

α2 is the rate
function of LDP for {BT }T>0.
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6. Concrete numerical methods. In this section, we show and compare the
LDPs of some concrete numerical methods to verify the theoretical results obtained
in previous sections. For symplectic methods, we consider the symplectic β-method,
the exponential method, INT method, and OPT method. For nonsymplectic ones,
we examine the θ-method, PC (PEM-MR) method, and PC (EM-BEM) method. All
of the methods can be found in [21], except the symplectic β-method (see, e.g., [18,
equation (2.7)]). Furthermore, we construct some symplectic methods which preserve
the LDP for {AT }T>0 or {BT }T>0 exactly.

6.1. Symplectic methods.

• Symplectic β-method (β ∈ [0, 1]):

Aβ =
1

1 + β(1− β)h2

(
1− (1− β)2h2 h

−h 1− β2h2

)
,

bβ =
1

1 + β(1− β)h2

(
(1− β)h

1

)
.

The straightforward calculation leads to

det(Aβ) = 1, tr(Aβ) =
2− (2β2 − 2β + 1)h2

1 + β(1− β)h2
,(6.1)

a12b2 − a22b1 =
βh

1 + β(1− β)h2
, b1 + a12b2 − a22b1 =

h

1 + β(1− β)h2
.(6.2)

It can be verified that the assumption (B) holds, and if h ∈ (0, 2), then for every
β ∈ [0, 1], assumptions (A1) and (A2) hold. Substituting (6.1) and (6.2) into (4.6),

we have Ih(y) = hy2

3α2 [ 3
2 −

3
6−(2β−1)2h2 ], which is the good rate function of LDP for

{AN}N≥1 of the symplectic β-method by Thoerem 4.3. Furthermore, we get the

modified rate function Ihmod(y) = Ih(y)/h = y2

3α2 [ 3
2 −

3
6−(2β−1)2h2 ].

Further, we have that limh→0 I
h
mod(y) = I(y) = y2

3α2 for every y ∈ R, which is
consistent with the third conclusion of Theorem 4.3. Moreover, for every h > 0, the
modified rate function of the mean position for the midpoint method with β = 1

2 is the
same as that for the exact solution. These indicate that the midpoint method exactly
preserves the LDP for {AT }T>0. In the case of β 6= 1

2 , Ihmod(y) < I(y) provided y 6= 0.
That is, as the time T and tN tend to infinity simultaneously, the exponential decay
speed of P(AN ∈ [a, a + da]) is slower than that of P (AT ∈ [a, a+ da]) provided
a 6= 0.

On the other hand, if h ∈ (0, 2) and β ∈ (0, 1), assumptions (A1) and (A2)
hold. By Theorem 5.2, {BN}N≥1 of the symplectic β-method satisfies an LDP with

the good rate function Jh(y) =
h[4−(2β−1)2h2][1+β(1−β)h2]y2

4α2 . This means that the

modified rate function Jhmod(·) satisfies limh→0 J
h
mod(y) = y2

α2 = J(y), which verifies
the third conclusion of Theorem 5.2.

• Exponential method (EX): AEX =
(

cos(h) sin(h)
− sin(h) cos(h)

)
, bEX = ( 0

1 ) .

For this method, it holds that

det(AEX) = 1, tr(AEX) = 2 cos(h),

a12b2 − a22b1 = sin(h), b1 + a12b2 − a22b1 = sin(h).

If h ∈ (0, π), then assumptions (A1) and (A2) hold. Then, we obtain that {AN}N≥1
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satisfies an LDP with the modified rate function Ihmod(y) = 2y2

α2

1−cos(h)
h2(2+cos(h)) . Hence, we

have limh→0 I
h
mod(y) = y2

3α2 = I(y). One can show that Ihmod(y) > I(y) provided that
h ∈ (0, π/6) and y 6= 0.

According to the discussions above, if h ∈ (0, π/6), then the mean position
{AN}N≥1 of the exponential method satisfies an LDP, which asymptotically pre-
serves the LDP for {AT }T>0. In addition, as the time T and tN tend to infinity
simultaneously, the exponential decay speed of P(AN ∈ [a, a+da]) is faster than that
of P (AT ∈ [a, a+ da]) provided that a 6= 0.

Analogously, we have that assumptions (A1) and (A2) hold for h ∈ (0, π). Hence,
for h ∈ (0, π), {BN}N≥1 of the exponential method satisfies an LDP with the modi-

fied rate function Jhmod(y) = y2

α2 = J(y). In this way, the exponential method exactly
preserves the LDP for {BT }T>0.

• Integral method (INT): AINT =
(

cos(h) sin(h)
− sin(h) cos(h)

)
, bINT =

(
sin(h)
cos(h)

)
.

For this method, det(AINT ) = 1, tr(AINT ) = 2 cos(h), a12b2 − a22b1 = 0 and
b1 + a12b2 − a22b1 = sin(h). It is shown that its modified rate functions of {AN}N≥1

and {BN}N≥1 are Ihmod(y) = 2y2

α2

1−cos(h)
h2(2+cos(h)) , and Jhmod(y) = y2

α2 = J(y), respectively.

This case is exactly the same as that of the exponential method.

• Optimal method (OPT): AOPT =
(

cos(h) sin(h)
− sin(h) cos(h)

)
, bOPT = 1

h

(
2 sin2(h2 )

sin(h)

)
.

Based on the above two formulas, one has

det(AOPT ) = 1, tr(AOPT ) = 2 cos(h), a12b2 − a22b1 = b1 =
1− cos(h)

h
.

If h ∈ (0, π), then assumptions (A1) and (A2) hold such that {AN}N≥1 of the optimal

method satisfies an LDP with the modified rate function Ihmod(y) = y2

3α2 = I(y). Thus,
we conclude that the LDP for mean position {AN}N≥1 of the optimal method exactly
preserves the LDP for {AT }T>0.

Assumptions (A1) and (A2) hold provided that h ∈ (0, π). Thus, for h ∈ (0, π),
{BN}N≥1 of the optimal method satisfies an LDP with the modified rate function

Jhmod(y) = h2y2

2(1−cos(h))α2 . Further, we have that limh→0 J
h
mod(y) = y2

α2 = J(y) and

Jhmod(y) > J(y). Hence, the optimal method asymptotically preserves the LDP for
{BT }T>0. When the time T and tN tend to infinity simultaneously, the exponential
decay speed of P(BN ∈ [a, a+ da]) is faster than that of P(BT ∈ [a, a+ da]) provided
a 6= 0.

6.2. Nonsymplectic methods.

• Stochastic θ-method (θ ∈ [0, 1/2) ∪ (1/2, 1]):

Aθ =
1

1 + θ2h2

(
1− (1− θ)θh2 h

−h 1− (1− θ)θh2

)
, bθ =

1

1 + θ2h2

(
θh
1

)
.

For this method, we have

det(Aθ) =
1 + (1− θ)2h2

1 + θ2h2
,

1− tr(Aθ) + det(Aθ) =
h2

1 + θ2h2
, b1 + a12b2 − a22b1 =

h

1 + θ2h2
.
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Notice that 0 < det(Aθ) < 1 is equivalent to θ ∈ (1/2, 1]. One can show that, with
θ ∈ (1/2, 1], (A1), (A3), and (A4) hold for every h > 0. Hence, for every θ ∈ (1/2, 1]
and h > 0, the mean position {AN}N≥1 satisfies an LDP with the modified rate func-

tion Ĩhmod(y) = y2

2α2 , which verifies the third conclusion of Theorem 4.4.

• PC (PEM-MR): A1 =
(

1−h2/2 h(1−h2/2)

−h 1−h2/2

)
, b1 =

(
h/2
1

)
.

One has that 1 − tr(A1) + det(A1) = h2 − h4

4 and b1 + a12b2 − a22b1 = h − h3

4 .

We obtain that (A1), (A3), and (A4) hold, provided h ∈ (0,
√

2). Thus, by Theo-
rem 4.4, {AN}N≥1 of this method satisfies an LDP with the modified rate function

Ĩhmod(y) = y2

2α2 .

• PC (EM-BEM): A2 =
(

1−h2 h
−h 1−h2

)
, b2 = ( h1 ).

We have that 1−tr(A2)+det(A2) = h2+h4 and b1+a12b2−a22b1 = h+h3. In this
case, (A1), (A3), and (A4) hold, provided h ∈ (0, 1). Thus, by Theorem 4.4, {AN}N≥1

of this method satisfies an LDP with the modified rate function Ĩhmod(y) = y2

2α2 .
We observe that all methods shown in sections 6.1 and 6.2 satisfy the assumption

(B). When the step-size h is sufficiently small, the symplectic methods in section 6.1
satisfy assumptions (A1) and (A2), and the nonsymplectic methods in section 6.2
satisfy assumptions (A1), (A3), and (A4). By studying these methods, we verify the
theoretical results in Theorems 4.3, 4.4, and 5.2. It is shown that symplectic methods
are superior to nonsymplectic methods in terms of preservation of the LDP for both
{AT }T>0 and {BT }T>0.

6.3. Construction for methods exactly preserving the LDP for {AT }T>0

or {BT }T>0. In this part, we construct several symplectic methods exactly preserv-
ing the LDP for {AT }T>0 (resp., {BT }T>0) based on Theorem 4.3 (resp., Theo-
rem 5.2).
• Methods exactly preserving the LDP for {AT }T>0.
Motivated by the assumption (B), we consider the method (3.1) with

(6.3) A =

(
1 + c11h

2 h+ c12h
2

−h+ c21h
2 1 + c22h

2

)
, b =

(
D1h

1 +D2h

)

with real constants cij and Di, i, j = 1, 2, independent of h. In order to make the
condition det(A) = 1 hold, we have

(1 + c11h
2)(1 + c22h

2) = 1 + (h+ c12h
2)(−h+ c21h

2) ∀ h > 0.

Comparing the coefficients, we obtain

c11 + c22 = −1, c11c22 = c12c21, c12 = c21.

Letting c12 = c21 = σ, then c11 and c22 are the roots of equation x2 + x + σ2 = 0.
To assure that c11 and c22 are real numbers, we assume σ ∈ [−1/2, 1/2]. Solving

the equation x2 + x + σ2 = 0 yields c11 = −1−
√

1−4σ2

2 , c22 = −1+
√

1−4σ2

2 or c11 =
−1+

√
1−4σ2

2 , c22 = −1−
√

1−4σ2

2 , where the case c11 = c22 = −1/2, σ = ±1/2 is included
in the above two cases. In order to acquire the methods exactly preserving the LDP
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for {AT }T>0, a necessary condition is that the modified rate function (4.1) satisfies

Ihmod(y) =
(2 + tr(A))(2− tr(A))2y2

2α2h2
[
(b1 + a12b2 − a22b1)2(4 + tr(A))− 2b1(a12b2 − a22b1)(2− tr(A))

]
=

y2

3α2
.

(6.4)

According to (6.3), it is known that

tr(A) = 2− h2, a12b2 − a22b1 = h
[
(1−D1) + (D2 + σ)h+ (D2σ −D1c22)h2

]
.

Substituting the above equation into (6.4), we have

6− 3h2

2
=
[
1 + (D2 + σ)h+ (D2σ −D1c22)h2

]2
(6− h2)

− 2D1h
2
[
1−D1 + (D2 + σ)h+ (D2σ −D1c22)h2

]
.(6.5)

By comparing the coefficients of h6 and h4 in (6.5) and some direct computation, we
finally obtain

D1 =
1

2
, σ = 0,±1

2
, c22 =

−1 +
√

1− 4σ2

2
, c11 =

−1−
√

1− 4σ2

2
, D2 = −σ.

Finally, we acquire three numerical methods, which exactly preserve the LDP for
{AT }T>0, with the matrix A and the vector b being respectively given by

A[1] =

(
1− h2 h
−h 1

)
, b[1] =

(
h/2
1

)
;(6.6)

A[2] =

(
1− h2/2 h+ h2/2
−h+ h2/2 1− h2/2

)
, b[2] =

(
h/2

1− h/2

)
;(6.7)

A[3] =

(
1− h2/2 h− h2/2
−h− h2/2 1− h2/2

)
, b[3] =

(
h/2

1 + h/2

)
.(6.8)

Moreover, if h ∈ (0, 2), methods based on (6.6), (6.7), and (6.8) satisfy assumptions

(A1) and (A2) and have the same modified rate function Ihmod(y) = y2

3α2 = I(y).

• Methods exactly preserving the LDP for {BT }T>0:
We still consider the method with coefficients satisfying (6.3). By the straight-

forward computation, we get the following methods exactly preserving the LDP for
{BT }T>0, whose coefficients are

A =

(
1− 1+

√
1−4σ2

2 h2 h+ σh2

−h+ σh2 1− 1−
√

1−4σ2

2 h2

)
, b =

(
h/2

1− σh

)
,

with σ = 0,± 1
2 , or

A =

(
1− 1−

√
1−4σ2

2 h2 h+ σh2

−h+ σh2 1− 1+
√

1−4σ2

2 h2

)
, b =

(
−h/2
1− σh

)
,
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with σ = 0,± 1
2 . Finally, besides methods based on (6.6), (6.7), and (6.8), we obtain

three more methods exactly preserving the LDP for {BT }T>0 with coefficients given
by

A[4] =

(
1 h
−h 1− h2

)
, b[4] =

(
−h/2

1

)
;(6.9)

A[5] =

(
1− h2/2 h+ h2/2
−h+ h2/2 1− h2/2

)
, b[5] =

(
−h/2

1− h/2

)
;(6.10)

A[6] =

(
1− h2/2 h− h2/2
−h− h2/2 1− h2/2

)
, b[6] =

(
−h/2

1 + h/2

)
.(6.11)

In fact, it is verified that methods based on (6.6)–(6.11) satisfy assumptions (A1) and

(A2) for h ∈ (0, 2) and have the same modified rate function Jhmod(y) = y2

α2 = J(y).

Remark 6.1. Note that three symplectic methods constructed based on (6.6),
(6.7), and (6.8) preserve exactly the LDP for {AT }T>0 and {BT }T>0 at the same
time.

7. Numerical experiments. In this section, we perform numerical experiments
to verify the theoretical results. We apply the algorithm in [20] to numerically sim-
ulate the large deviations rate functions of {AT }T>0 and {BT }T>0, where the key is
to simulate the logarithmic moment generating function based on the Monte–Carlo
method.

In detail, for a given numerical method {xn, yn}n≥0 approximating (2.1), we

first obtain M samplings of {xn}N0−1
n=0 for a given N0, which immediately generate

M samplings A
(i)
N0

, i = 1, 2, . . . ,M (recall AN0
= 1

N0

∑N0−1
n=0 xn). Then we take

GM,N0
(λ) = 1

M

∑M
i=1 e

λN0A
(i)
N0 as the approximation of EeλN0AN0 . Further, for suf-

ficiently large N0, ΛhM,N0
(λ) = 1

N0
logGM,N0

(λ) is used to approximate Λh(λ) =

limN→∞
1
N logEeλNAN . Finally, noting that (GM,N0

)′(λ) = 1
M

∑M
i=1 e

N0A
(i)
N0N0A

(i)
N0

,

we can simulate the value of the rate function Ih(y) = supλ∈R{λy − Λh(λ)} at

y(λ) := (ΛhM,N0
)′(λ) =

(GM,N0
)′(λ)

N0GM,N0
(λ) by IhM,N0

(y(λ)) = λy(λ) − ΛhM,N0
(λ). Hence,

we have the following algorithm.

Algorithm 7.1

1. Choose the proper step-size h, sample size M , and number of steps N0,

and compute numerical solution x
(i)
n , i = 1, 2, . . . ,M, n = 0, 1, . . . , N0 − 1.

2. Set SN0
(i) =

∑N0−1
n=0 x

(i)
n , i = 1, 2, . . . ,M .

3. For a given K > 0, compute GM,N0(λ) = 1
M

∑M
i=1 e

λS
(i)
N0

and (GM,N0
)
′
(λ) = 1

M

∑M
i=1 S

(i)
N0
eλS

(i)
N0 for sufficiently many λ ∈ [−K,K].

4. Compute ΛhM,N0
(λ) = log (GM,N0

(λ))
1/N0 and y(λ) =

(GM,N0)
′
(λ)

N0GM,N0
(λ) .

5. Compute IhM,N0
(y(λ)) = λy(λ)− ΛhM,N0

(λ) and Ih,M,N0

mod (y(λ)) = IhM,N0
(y(λ))/h.

The numerical realization of the rate functions of {BN}N≥1 based on a given
numerical method is analogous to that of {AN}N≥1. We refer readers to [20] for more
details.

According to Algorithm 7.1, we numerically simulate the modified rate functions
of {AN}N≥1 of the midpoint scheme (symplectic β-method with β = 1/2) and the
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Fig. 1. Modified rate functions of the midpoint scheme and PEM-MR method under different
step-sizes with M = 2000, N0 = 600, α = 1.5, K = 1.5, and (x0, y0) = (0.5, 0).

PEM-MR method in section 6. We set initial data (x0, y0) = (0.5, 0), M = 2000, N0 =
600, and α = 1.5. In the third step, GM,N0

is computed at λ(j) = −K + 0.001(j− 1),
j = 1, 2, . . . , 2000K+ 1 with K = 1.5. It is observed from Figure 1 that as step-size h
decreases, the modified rate function Ihmod,1 of the midpoint scheme becomes closer to

the rate function I(y) = y2

3α2 of {AT }T>0, while the modified rate function of the PEM-

MR method gets closer to I ′(y) = y2

2α2 . When h = 1.5, 1, 0.5, Ihmod,1 nearly coincides

with I(y) = y2

3α2 on intervals [−0.05, 0.05], [−0.15, 0.1], and [−0.35, 0.3], respectively.
These verify our theoretical results in Theorems 4.3 and 4.4. Analogously, we perform
numerical experiments to simulate the modified rate function of the EX method from
section 6. As observed in Figure 2, the modified rate function gradually converges to
the rate function of {BT }T>0, which verifies the result in Theorem 5.2.

Before ending this section, we would like to mention that our theoretical results
are meaningful for computing large deviations rate functions. More precisely, if one
wants to simulate the rate functions of observables associated with stochastic Hamil-
tonian systems by computing the logarithmic generating moment function, applying
the symplectic method is a prime choice, as shown in Figure 1.

8. Conclusions and future aspects. In this paper, in order to evaluate the
ability of the numerical method to preserve the large deviations rate functions asso-
ciated with the general stochastic Hamiltonian systems, we propose the concept of
asymptotical preservation for LDPs. It is shown that stochastic symplectic methods
applied to the stochastic test equation, that is, the linear stochastic oscillator, asymp-
totically preserve the LDPs for {AT }T>0 and {BT }T>0, but nonsymplectic ones do
not. This indicates the superiority of stochastic symplectic methods in the aspect
of asymptotically preserving large deviations principles. In fact, there are still many
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Fig. 2. Modified rate functions of EX method under different step-sizes with M = 2000,
N0 = 600, α = 1.5, K = 1.5, and (x0, y0) = (0.5, 0).

problems of interest which remain to be solved. We list some possible aspects for
future work.

(1) Can the stochastic symplectic methods asymptotically preserve the LDPs for
all observables associated with the linear stochastic oscillator?

(2) Can stochastic symplectic methods asymptotically preserve the LDPs for ob-
servables associated with the general stochastic Hamiltonian system which is
driven by multiplicative noises or in higher dimension?

(3) For a stochastic Hamiltonian partial differential equation which possesses the
symplectic or multisymplectic structure, such as the stochastic Schrödinger
equation, do the symplectic or multisymplectic numerical methods asymptot-
ically preserve the LDP of the original system?

These problems are very challenging. Because the large deviations rate functions do
not generally have explicit expression for more complex SDEs and their numerical
solutions, it is difficult to analyze the asymptotical behavior of rate functions of nu-
merical methods. In addition, the large deviations estimates on infinite dimensional
Banach spaces are more involved. We leave these problems as the open problems and
attempt to study them in our future work.

Appendix A. Proof of Lemma 3.1.

Proof. Using the fact sin(nθ) = 1
2i (einθ − e−inθ), one immediately has

N∑
n=1

sin(nθ)an =
a sin(θ)− aN+1 sin((N + 1)θ) + aN+2 sin(Nθ)

1− 2a cos(θ) + a2
.
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For a = 1, utilizing the formula sin(α)− sin(β) = 2 cos(α+β
2 ) sin(α−β2 ) gives

N∑
n=1

sin(nθ) =
sin(θ)− sin((N + 1)θ) + sin(Nθ)

2(1− cos(θ))
=

cos
(
θ
2

)
− cos((N + 1

2 )θ)

2 sin
(
θ
2

) ,

which completes the proof.

Appendix B. Proof of Lemma 3.3.

Proof. (1) Assume that b21 + (a12b2 − a22b1)2 = 0, i.e., b1 = a12b2 − a22b1 = 0.
Noting that b21 + b22 6= 0, one has b2 6= 0, which leads to a12 = 0. Since det(A) =
a11a22 − a12a21 = 1, a11a22 = 1. Hence a11, a22 > 0 or a11, a22 < 0. It follows from
assumptions (A1) and (A2) that −2 < tr(A) < 2. In this way, |tr(A)| = |a11|+ |a22| <
2. This is contradictory to |a11a22| = 1, since 1 =

√
|a11a22| ≤ 1

2 (|a11| + |a22|) < 1.
This proves the first conclusion.

(2) Denote S := (b1 + a12b2 − a22b1)2(4 + tr(A))− 2b1(a12b2 − a22b1)(2− tr(A)),
p := b1, and q := a12b2 − a22b1. Then S = (p + q)2(4 + tr(A)) − 2pq(2 − tr(A)) =
tr(A)((p+ q)2 + 2pq) + 4(p+ q)2 − 4pq. By studying the infimum of S in three kinds
of cases—(p+ q)2 + 2pq > 0, (p+ q)2 + 2pq < 0 and (p+ q)2 + 2pq = 0—one can prove
that S > 0.

Appendix C. Proof of Theorem 4.1.

Proof. Denote Zt = (Xt, Yt)
>, J =

(
0 1
−1 0

)
, K = ( 0

1 ). We rewrite (2.1) as
dZt = JZtdt + αKdWt. Let Z be the solution of the above equation at t + h, with
the deterministic value z at t. Note that for any u > v ≥ 0, Zu = Zv + J

∫ u
v
Zrdr +

αK
∫ u
v

dWr. Using the above formula, one can show that

Z = z + hJz + αK(Wt+h −Wt) + J2

∫ t+h

t

∫ s

t

Zrdrds+ αJK

∫ t+h

t

∫ s

t

dWrds

= AEMz + αbEM (Wt+h −Wt) +R,

(C.1)

whereR := J2
∫ t+h
t

∫ s
t
Zrdrds+αJK

∫ t+h
t

∫ s
t

dWrds with ‖ER‖2 ≤ Ch2 and E‖R‖22 ≤
Ch3. Further, the one-step approximation based on the method (3.1) is Ẑ = Az +
αb(Wt+h −Wt). In this way, we obtain

(C.2)
∥∥∥E(Ẑ − Z)

∥∥∥
2
≤ C

∥∥A−AEM∥∥
F
‖z‖2 + ‖ER‖2 ≤ Ch2,

where the second equality uses the equivalence of norms in finite dimensional normed
linear spaces. In addition, it holds that

E
∥∥∥Ẑ − Z∥∥∥2

2
≤ C

∥∥A−AEM∥∥2

F
‖z‖22 + Cα2

∥∥b− bEM∥∥2

2
E(∆W 2) + CE‖R‖22 ≤ Ch3.

(C.3)

It follows from (C.2), (C.3), and [18, Theorem 1.1] that the mean-square convergence
order of numerical method (3.1) is at least 1.

Appendix D. Proof of Lemma 4.2.

Proof. If (B) holds, then a11 = 1 + O(h2), a22 = 1 + O(h2). Thus, tr(A) =
2 + O(h2), which leads to the assertion (1). Further, 1 − tr(A) + det(A) = (a11 −
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1)(a22−1)−a12a21. Noting that a12 ∼ h and a21 ∼ −h, one has (1−tr(A)+det(A)) ∼
h2. Finally, since limh→0

a12b2
h = limh→0

(a12−h)(b2−1)+h(b2−1)+a12
h = 1, it holds that

limh→0
b1+a12b2−a22b1

h = limh→0
a12b2
h +limh→0

b1(1−a22)
h = 1, which is nothing but the

assertion (3).

Appendix E. Proof of Lemma 5.1.

Proof. It follows from Lemma 3.3(1) that b21 + (a12b2 − a22b1)2 6= 0. Denote
T = (b1 + a12b2 − a22b1)2 − b1(a12b2 − a22b1)(2 − tr(A)). Then T = b21 + (a12b2 −
a22b1)2 + b1(a12b2 − a22b1)tr(A). Next we show that T > 0.

Case 1: b1 = 0 or a12b2−a22b1 = 0. This associated with b21 +(a12b2−a22b1)2 6= 0
immediately leads to T > 0.

Case 2: b1 6= 0 and a12b2 − a22b1 6= 0. We note that under assumptions (A1)
and (A2), −2 < tr(A) < 2. If tr(A) = 0, T > 0 holds naturally. If tr(A) 6= 0,
then 0 < |tr(A)| < 2. As a result, |b1(a12b2 − a22b1)tr(A)| < 2|b1(a12b2 − a22b1)| ≤
b21 + (a12b2 − a22b1)2, which implies T > 0.
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